Intel 8086 - meaning and definition. What is Intel 8086
Diclib.com
ChatGPT AI Dictionary
Enter a word or phrase in any language 👆
Language:

Translation and analysis of words by ChatGPT artificial intelligence

On this page you can get a detailed analysis of a word or phrase, produced by the best artificial intelligence technology to date:

  • how the word is used
  • frequency of use
  • it is used more often in oral or written speech
  • word translation options
  • usage examples (several phrases with translation)
  • etymology

What (who) is Intel 8086 - definition


Intel 8086         
  • Intel 8086 CPU die image
  • ''Simplified block diagram over Intel 8088 (a variant of 8086); 1=main & index registers; 2=segment registers and IP; 3=address adder; 4=internal address bus; 5=instruction queue; 6=control unit (very simplified!); 7=bus interface; 8=internal databus; 9=ALU; 10/11/12=external address/data/control bus.''
  • The 8086 pin assignments in min and max mode
  • The [[AMD]] Am8086
16-BIT CENTRAL PROCESSING UNIT
8086; Maximum mode; Minimum mode; 8086 Microprocessor; Microprocessor 8086; I8086; 8086 microprocessor; CS register; IAPX 86; 80C86; Harris 80C86; IAPX 86/10; Intel iAPX 86; Intel iAPX 86/10; SAB 8086; SAB 8086-C; SAB 8086-2; Siemens SAB 8086; Siemens SAB 8086-C; Siemens SAB 8086-2; Intel MCS-86; MCS-86; Intel C8086; C8086; M8086; Intel M8086; Intel I8086; Intel 80C86; 8086-1; 8086-2; 8086-4; Intel 8086-1; Intel 8086-2; Intel 8086-4; SAB8086; SAB8086-1; SAB8086-1-C; SAB8086-1-P; SAB8086-2; SAB8086-2-C; SAB8086-2-P; SAB 8086-1; SAB 8086-1-C; SAB 8086-1-P; SAB 8086-2-C; SAB 8086-2-P; SAB 8086-4; SAB 8086-4-C; Siemens SAB 8086-1; Siemens SAB 8086-1-C; Siemens SAB 8086-2-C; Siemens SAB 8086-1-P; Siemens SAB 8086-2-P; Siemens SAB 8086-4; Siemens SAB 8086-4-C; Siemens SAB8086; Siemens SAB8086-1; Siemens SAB8086-1-C; Siemens SAB8086-1-P; Siemens SAB8086-2; Siemens SAB8086-2-C; Siemens SAB8086-2-P; Siemens SAB8086-4; Siemens SAB8086-4-C
The 8086 (also called iAPX 86) is a 16-bit microprocessor chip designed by Intel between early 1976 and June 8, 1978, when it was released. The Intel 8088, released July 1, 1979, is a slightly modified chip with an external 8-bit data bus (allowing the use of cheaper and fewer supporting ICs),Fewer TTL buffers, latches, multiplexers (although the amount of TTL logic was not drastically reduced).
Intel 8086         
  • Intel 8086 CPU die image
  • ''Simplified block diagram over Intel 8088 (a variant of 8086); 1=main & index registers; 2=segment registers and IP; 3=address adder; 4=internal address bus; 5=instruction queue; 6=control unit (very simplified!); 7=bus interface; 8=internal databus; 9=ALU; 10/11/12=external address/data/control bus.''
  • The 8086 pin assignments in min and max mode
  • The [[AMD]] Am8086
16-BIT CENTRAL PROCESSING UNIT
8086; Maximum mode; Minimum mode; 8086 Microprocessor; Microprocessor 8086; I8086; 8086 microprocessor; CS register; IAPX 86; 80C86; Harris 80C86; IAPX 86/10; Intel iAPX 86; Intel iAPX 86/10; SAB 8086; SAB 8086-C; SAB 8086-2; Siemens SAB 8086; Siemens SAB 8086-C; Siemens SAB 8086-2; Intel MCS-86; MCS-86; Intel C8086; C8086; M8086; Intel M8086; Intel I8086; Intel 80C86; 8086-1; 8086-2; 8086-4; Intel 8086-1; Intel 8086-2; Intel 8086-4; SAB8086; SAB8086-1; SAB8086-1-C; SAB8086-1-P; SAB8086-2; SAB8086-2-C; SAB8086-2-P; SAB 8086-1; SAB 8086-1-C; SAB 8086-1-P; SAB 8086-2-C; SAB 8086-2-P; SAB 8086-4; SAB 8086-4-C; Siemens SAB 8086-1; Siemens SAB 8086-1-C; Siemens SAB 8086-2-C; Siemens SAB 8086-1-P; Siemens SAB 8086-2-P; Siemens SAB 8086-4; Siemens SAB 8086-4-C; Siemens SAB8086; Siemens SAB8086-1; Siemens SAB8086-1-C; Siemens SAB8086-1-P; Siemens SAB8086-2; Siemens SAB8086-2-C; Siemens SAB8086-2-P; Siemens SAB8086-4; Siemens SAB8086-4-C
<processor> A sixteen bit microprocessor chip used in early IBM PCs. The Intel 8088 was a version with an eight-bit external data bus. The Intel 8086 was based on the design of the Intel 8080 and Intel 8085 (it was source compatible with the 8080) with a similar register set, but was expanded to 16 bits. The Bus Interface Unit fed the instruction stream to the Execution Unit through a 6 byte prefetch queue, so fetch and execution were concurrent - a primitive form of pipelining (8086 instructions varied from 1 to 4 bytes). It featured four 16-bit general registers, which could also be accessed as eight 8-bit registers, and four 16-bit {index registers} (including the stack pointer). The data registers were often used implicitly by instructions, complicating register allocation for temporary values. It featured 64K 8-bit I/O (or 32K 16 bit) ports and fixed vectored interrupts. There were also four {segment registers} that could be set from index registers. The segment registers allowed the CPU to access 1 meg of memory in an odd way. Rather than just supplying missing bytes, as most segmented processors, the 8086 actually shifted the segment registers left 4 bits and added it to the address. As a result, segments overlapped, and it was possible to have two pointers with the same value point to two different memory locations, or two pointers with different values pointing to the same location. Most people consider this a {brain damaged} design. Although this was largely acceptable for assembly language, where control of the segments was complete (it could even be useful then), in higher level languages it caused constant confusion (e.g. near/far pointers). Even worse, this made expanding the address space to more than 1 meg difficult. A later version, the Intel 80386, expanded the design to 32 bits, and "fixed" the segmentation, but required extra modes (suppressing the new features) for compatibility, and retains the awkward architecture. In fact, with the right assembler, code written for the 8008 can still be run on the most recent Intel 486. The Intel 80386 added new op codes in a kludgy fashion similar to the Zilog Z80 and Zilog Z280. The {Intel 486} added full pipelines, and clock doubling (like the Zilog Z280). So why did IBM chose the 8086 series when most of the alternatives were so much better? Apparently IBM's own engineers wanted to use the Motorola 68000, and it was used later in the forgotten IBM Instruments 9000 Laboratory Computer, but IBM already had rights to manufacture the 8086, in exchange for giving Intel the rights to its bubble memory designs. Apparently IBM was using 8086s in the IBM Displaywriter word processor. Other factors were the 8-bit Intel 8088 version, which could use existing Intel 8085-type components, and allowed the computer to be based on a modified 8085 design. 68000 components were not widely available, though it could use Motorola 6800 components to an extent. Intel bubble memory was on the market for a while, but faded away as better and cheaper memory technologies arrived. (1994-12-23)
8086         
  • Intel 8086 CPU die image
  • ''Simplified block diagram over Intel 8088 (a variant of 8086); 1=main & index registers; 2=segment registers and IP; 3=address adder; 4=internal address bus; 5=instruction queue; 6=control unit (very simplified!); 7=bus interface; 8=internal databus; 9=ALU; 10/11/12=external address/data/control bus.''
  • The 8086 pin assignments in min and max mode
  • The [[AMD]] Am8086
16-BIT CENTRAL PROCESSING UNIT
8086; Maximum mode; Minimum mode; 8086 Microprocessor; Microprocessor 8086; I8086; 8086 microprocessor; CS register; IAPX 86; 80C86; Harris 80C86; IAPX 86/10; Intel iAPX 86; Intel iAPX 86/10; SAB 8086; SAB 8086-C; SAB 8086-2; Siemens SAB 8086; Siemens SAB 8086-C; Siemens SAB 8086-2; Intel MCS-86; MCS-86; Intel C8086; C8086; M8086; Intel M8086; Intel I8086; Intel 80C86; 8086-1; 8086-2; 8086-4; Intel 8086-1; Intel 8086-2; Intel 8086-4; SAB8086; SAB8086-1; SAB8086-1-C; SAB8086-1-P; SAB8086-2; SAB8086-2-C; SAB8086-2-P; SAB 8086-1; SAB 8086-1-C; SAB 8086-1-P; SAB 8086-2-C; SAB 8086-2-P; SAB 8086-4; SAB 8086-4-C; Siemens SAB 8086-1; Siemens SAB 8086-1-C; Siemens SAB 8086-2-C; Siemens SAB 8086-1-P; Siemens SAB 8086-2-P; Siemens SAB 8086-4; Siemens SAB 8086-4-C; Siemens SAB8086; Siemens SAB8086-1; Siemens SAB8086-1-C; Siemens SAB8086-1-P; Siemens SAB8086-2; Siemens SAB8086-2-C; Siemens SAB8086-2-P; Siemens SAB8086-4; Siemens SAB8086-4-C